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 Applied Logistic Regression     

 
Overview 
 
Logistic regression is similar to ordinary multiple regression – except that logistic regression is 
used when the dependent variable is binary and assumes only two discrete values.  Examples 
include ‘yes-no’ dependent variables such as whether a customer responded to a marketing 
campaign or not, whether a person is a homeowner or not, whether a business goes bankrupt 
or not, or whether a person votes guilty or not guilty.  Like ordinary multiple regression, the 
predictor variables can be metric variables (e.g., age, income, or sales units) or categorical 
(e.g., gender, religion, or region).  Indicator or ‘dummy’ variables are used to include categorical 
variables as predictors.    
 
While the basic concepts are similar for multiple linear regression and logistic regression, the 
interpretation of the regression equation and the coefficients are somewhat different.  In multiple 
regression, the dependent variable is a continuous or metric variable – sales or profits, for 
example – and can assume many values.  The multiple regression coefficients are multiplied by 
the values of the predictor variables to yield the predicted value for the dependent variable.  
 
In logistic regression, the observed values for the dependent variable take on only two values 
and are usually represented using a 0-1 dummy variable.  The mean of a 0-1 dummy variable is 
equal to the proportion of observations with a value of 1 – and can be interpreted as a 
probability.   The predicted values in a logistic regression will always range between 0 and 1 
and are also interpreted as probabilities.  
 
Suppose we are modeling home ownership (where 1 indicates a homeowner and 0 a non-
owner) as a function of income.  Each individual in the dataset is either a homeowner or not so 
the observed values for the dependent variable will be 0 or 1.   The predicted value based on 
the model is interpreted as the probability that the individual is a homeowner.  For example, for 
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a person with an income of $35,000, the predicted probability may be .22 compared with a 
predicted probability of .95 for a person with a $250,000 income.   
 
Like linear regression, once a logistic regression model has been estimated it can be used to 
make predictions for new observations.  Assume a bank has data from a past marketing 
campaign promoting a ‘gold’ credit card – including whether the customer signed up for the offer 
or not (the dependent variable) as well as information on other bank services the customer used 
plus financial and demographic customer information (the predictor variables).  These data can  
be used to estimate a logistic regression model.  Then the bank could use this model to identify 
which additional customers to target with this or a similar offer.  By inputting values for the 
predictor variables for each new customer – the logistic model will yield a predicted probability.   
Customers with high predicted probabilities may be chosen to receive the offer since they seem 
more likely to respond positively. 
 
A difference between linear and logistic regression is the shape of the model as shown in 
Exhibit 1.  The simple linear regression is represented by a straight line.  For the linear 
regression, an increase of one unit in the predictor variable has a constant effect – equal to the 
slope of the line. In logistic regression, the relationship between the dependent variable and the 
predictor variables is assumed to be nonlinear.  A logistic regression model with a single 
predictor is represented by an s-shaped curve.   Moreover, the curve never falls below 0 or 
exceeds 1 – regardless of the values of the predictor variables.  Thus, the predicted values can 
always be interpreted as probabilities.   
 
 
Exhibit 1  Simple Linear Regression versus Logistic Regression  
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
In logistic regression, the effect on the predicted probability of a one-unit increase in the 
predictor variable varies.  At the extremes, a one-unit change has very little effect, but has a 
larger effect in the middle.  In many situations, this is intuitive.  For example, consider the effect 
that a $20,000 increase in income might have on the probability of home ownership.  The 
difference in the likelihood that an individual owns a home may not change much as their 
income increases from $10,000 to $30,000 or from $1,000,000 to $1,020,000 – but may 
increase quite a bit if income increases from $50,000 to $70,000.  Unfortunately, this non-
linearity complicates the interpretation of the regression coefficients.  In a linear regression, the 
interpretation of the coefficient for X is straightforward:  an increase of 1 unit in X results in a 

Linear Regression  Logistic Regression  



Page 3 

change in the expected value of Y equal to B (the coefficient for X).  However, in a logistic 
regression, we cannot say that a 1 unit increase in X will result in an expected change in Y 
equal to B.   Rather, it depends on where on the curve the value of X is located.   
 
The Simple Logistic Regression Curve 
 
Consider the simple case with a single predictor variable.  For now, we assume that the 
predictor variable is a continuous variable.  In a simple linear regression, the model would be: 
 

Y = B0 + B1X 
 

where  B0 is the intercept or constant term (equal to the predicted value of Y when X=0), and 
 B1 is the slope of the regression line. 

 
In a simple logistic regression, the model is: 
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which can be also be written as: 
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Thus, as in linear regression, there are two coefficients, B0 and B1, in a simple logistic 
regression.  These coefficients determine the specific shape of the curve.  The B0 coefficient 
(also referred to as the constant) determines the location of the logistic curve along the X axis.  
As the constant increases, the logistic curve shifts left on the X axis.  The B1 coefficient 
determines the steepness and direction of the curve.  A positive B1 means the curve will 
increase as X increases.  If B1 is negative, the curve decreases as X increases.   Larger values 
for B1 indicate a steeper curve.   
 
Exhibit 2  Logistic Regression Coefficients Control the Shape of the Curve  
 
 
 
 
 
 
 
 
 
 
 
 
 
B0 coefficient ‘shifts’ the curve                                     B1 coefficient controls the steepness  
 
 
 



Page 4 

Interpreting Logistic Regression Coefficients 
 
In simple linear regression, interpretation of the coefficients is straightforward.  The constant 
term estimates the value of Y when X=0.  The B1 coefficient estimates the change in Y for a one 
unit increase in X.   Because of the nonlinear nature of the logistic regression model, 
interpretation of the coefficients is more complex.  To interpret logistic regression, we start with 
a discussion of probabilities, odds and odds ratios.   
 
A probability is the likelihood of an event and is bounded between 0 and 1.  If the weather 
forecast says the probability of rain is 0.25, then there is a 25% chance of rain.  Odds are the 
ratios of two probabilities:  the probability that the event will occur divided by the probability that 
the event will not occur.  If the probability of rain is 0.25, then the odds are: 
 

Odds = 333.
3
1

75.0
25.0

event) (no Prob
(event) Prob

===  

 
Since odds are the ratio of two probabilities, odds are always positive, but may be greater than 
one.  In fact, odds can range from 0 to infinity.  When the odds are less than 1, the probability of 
the event (say, rain) is lower than the probability of no event (no rain).  Conversely, odds greater 
than 1 indicate the probability of the event is greater than the probability of no event.  Odds of 1 
indicate equal (that is, .50) probabilities of event and no event – meaning that both outcomes 
are equally likely.   
 
Finally, an odds ratio is the ratio of two odds.  In logistic regression, the odds ratio for the 
predictor variable X indicates the expected change in the odds that Prob(Y=1) for a one unit 
increase in X.  The odds ratio is particularly important in logistic regression because, unlike 
linear regression, the ‘slope’ of the curve is not constant.  However, the odds ratio for a predictor 
variable is constant.  The odds ratio for the predictor variable is computed by raising e to the 
power B1, or 1Be .  For example, consider a logistic regression to predict the probability of 
purchase of a newly released movie DVD (the dependent variable) using the value (in dollars) of 
an ‘instant coupon’.  If the B1 coefficient is 0.7, we know – since the coefficient is positive - that 
increasing the value of the instant coupon increases the probability of purchase.  However, 
because of the s-shaped curve, the magnitude of the increase will depend on whether the 
increase is, say, from $1 to $2 or from $4 to $5.  Since 01.27.0 =e , we can say that for every 
dollar increase in the instant coupon value, the odds of purchase increase by a factor of 2.01.  
That is, the odds of purchase are twice a large for a $5 coupon compared with a $4 coupon. 
 
Simple Logistic Regression Example Using SPSS 
 
In December 1998 the U.S. Senate voted on two articles of impeachment against President 
Clinton.  The vote of each senator is a binary variable – taking on only two values, guilty or not 
guilty.  Exhibit 3 shows the number of guilty and not guilty votes on the first article of 
impeachment. 
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Exhibit 3 Number of Guilty and Not Guilty Votes on Impeachment Article 1 
 

Vote on Article I

55 55.0 55.0 55.0
45 45.0 45.0 100.0

100 100.0 100.0

not guilty
guilty
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
 
 
 
 
In addition to the each senator’s vote (guilty or not guilty) on each of the two articles of 
impeachment, we have data on variables that might be predictive of how a senator voted.  
These include: 
 

• Political Party (Republican or Democrat). 
• Percent of the vote Clinton received in the 1996 presidential election in the senator’s 

state. 
• Degree of ideological conservatism (0 – 100 where 100 is most conservative).  These 

ratings are issued by the American Conservative Union and are based on a senator’s 
voting records.   

 
The simple cross-tabs in Exhibit 4 shows a strong association between political party and the 
first vote.  All of the democratic senators voted not guilty whereas the great majority of 
republican senators voted guilty.   
 
 
Exhibit 4 Cross-tabs of Political Party and Vote on Article 1 
 

Count

45 45

10 45 55

55 45 100

democrat
republican

political party

Total

not guilty guilty
Vote on Article I

Total

 
 
 
 
Exhibit 5 reports the correlations between the vote on the first article, degree of ideological 
conservatism and percent of the vote Clinton received in the senator’s state.   Degree of 
conservatism has a high positive correlation (.866) with vote – guilty votes are associated with 
more conservative senators.  In contrast, percent of state vote shows a moderate negative 
correlation (-.429) with the vote – as a larger percent of the 1996 state vote was for Clinton, the 
more not guilty votes.  
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Exhibit 5  Correlations between vote on article 1, conservatism and % of state vote for Clinton 
 

1.000 .866** -.429**
. .000 .000

100 100 100
.866** 1.000 -.447**
.000 . .000
100 100 100

-.429** -.447** 1.000
.000 .000 .

100 100 100

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

Vote on Article I

degree of conservativism

% of vote for Clinton in
state

Vote on
Article I

degree of
conservativism

% of vote for
Clinton in

state

Correlation is significant at the 0.01 level (2-tailed).**. 
 

  
Because the variable we want to predict is binary (vote of guilty or not guilty), logistic regression 
is appropriate.  While the other three variables (political party, degree of conservatism and % of 
state vote for Clinton in 1996 election) are potential predictors of the vote on the first 
impeachment article, high correlations or collinearity between these predictors is likely – 
particularly between political party and degree of conservatism.  The correlation between these 
two variables is .906, suggesting that it would be unwise to include both as predictors.  Since 
the ideological conservatism variable captures a broader range than simple party affiliation, let 
us start by considering that as a single predictor. 
 
A simple scatter plot of vote (0=not guilty, 1=guilty) versus degree of conservatism is shown in 
Exhibit 6.  Because of the 0-1 nature of the dependent variable, this plot is not as insightful as 
one might hope – although it does show that senators with lower ratings on conservatism 
tended to vote not guilty, whereas nearly all senators with high conservatism ratings voted 
guilty.   
 
Exhibit 6 Scatterplot of senate vote (guilty =1) by degree of conservatism  
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A logistic regression using the vote on Article 1 as the dependent variable and degree of 
ideological conservatism as the predictor will allow us to quantify the relationship between these 
variables and to assign a specific probability of a guilty vote to each senator.  Exhibit 7 lists the 
steps to run a logistic regression in SPSS (see the Appendix for additional details and options 
for running logistic regressions in SPSS). 
 
 

 
Exhibit 7 How to specify a logistic regression in SPSS 

 
• Select Analyze/Regression/Binary logistic 

• Select your dependent variable 

• Select your independent variable(s) (called covariates by SPSS) 

• (optional)To save the predicted values (this will create a new column of data with the 
predicted probabilities): 

o Click on Save… 

o Click on Probabilities under Predicted Values 

o Click on Continue 

• Click on OK. 

 

 
Interpreting the SPSS Output 
 
Exhibit 8 contains the full SPSS output from the logistic regression.  Key parts of the output 
have been labeled and are described below. 
 
A:  This indicates how many cases are included in the analysis and how many, if any, have 

missing variables.  Here, we see that all 100 cases have been included.  
 
B:  This indicates how the dependent variable is coded:   
   1 indicates guilty and 0 not guilty. 
 
C:  Block 0: Beginning Block:  

This reports results from an ‘intercept-only’ model and we will skip directly to the Block 1 
results.  In essence, this model is a basis of comparison for the model specified.   

 
D:  Omnibus Tests of Model Coefficients:   

These values test whether or not all of the predictor variables entered in this step, in this 
block, or in the model have a significant effect.  Here these values are all the same – they 
will differ if you request a stepwise regression or enter the variables in ‘blocks’ (i.e., groups 
of variables).   Higher chi-square values indicate more significance which is reported in the 
column labeled ‘Sig.’   A 0.05 cutoff for significance level is commonly used – here the 0.000 
is less than 0.05 so we conclude that the model is statistically significant.   
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E:  Model Summary:   
-2 Log likelihood is used to measure how well the model fits the data.  Smaller values are 
better – although we will not focus on this statistic.  The two R-square measures are 
attempts to come up a measure comparable to the familiar R2 from ordinary multiple 
regression.  However because the observed values for the dependent variable in a logistic 
regression can take on only two values, 0 or 1, there isn’t a measure that is totally 
analogous.  However, as in linear regression, higher values are ‘better’ and these measures 
can be used to compare models with different sets of predictor variables.   
 

F:  Classification Table: 
The classification table compares the predicted values for the dependent variable, based on 
the model, with the actual observed values in the data.  SPSS uses the predicted 
probabilities for each case (or senator) to compute the predicted value.  By default, the 
SPSS cutoff is 0.50 – although a different value can be chosen.   
 
If the predicted probability is greater than the cutoff of 0.50, SPSS predicts a value of 1 
(which would be a guilty vote in this case).  If the predicted probability is less than 0.50, 
SPSS predicts a value of 0 (or a not guilty vote for this data).   The actual and predicted 
values are summarized in a 2x2 table along with the percentages of correct classifications.  
Here we see that, overall, the model correctly predicts or classifies 94% (=94/100) of the 
votes.  The percent of not guilty votes correctly classified is 90.9% (=50/55) and the percent 
of guilty votes correctly classified is 97.8% (=44/45). 
 

G:  Variables in the Equation: 
The Variables in the Equation table summarizes the coefficients, standard errors, 
significance tests and odds ratios for each variable in the model as well as the constant 
term. 
 
B:  These are the coefficients in the logistic regression equation.  In this case the final model 
equation is:   P(Guilty) =  1/[1+exp(-Σ BX)] 
                  =    1/[1+exp(6.207 - .108 conservative)] 
 
S.E.: The standard error of B. 
 
Wald:  A measure of the significance of the predictor variables.  Higher values in conjunction 
with the degrees of freedom (df) indicate significance. 
 
Sig.:  The significance of the Wald test.  If the common 0.05 cutoff for significance level is 
used, values less than 0.05 indicate statistical significance. 
 
Exp(B):  This is the odds ratio and is useful for interpreting the effects of the predictor 
variables. 

 
 
In summary, a senator’s degree of ideological conservatism is a significant predictor of his or 
her vote on the first article of impeachment.  The coefficient for the conservatism variable is 
positive – so more conservative senators were more likely to cast a guilty vote.  Using this 
single predictor, the model correctly classified 94% of the senators, with a slightly higher 
prediction accuracy for guilty votes than for not guilty.  Exhibit 9 lists the predicted probabilities 
for different ratings of ideological conservatism.  Exhibit 10 shows a plot (based on the numbers 
in Exhibit 9) of the logistic regression model.
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Exhibit 8 Logistic Regression SPSS Output 
 
 
Logistic Regression 

Case Processing Summary

100 100.0
0 .0

100 100.0
0 .0

100 100.0

Unweighted Casesa

Included in Analysis
Missing Cases
Total

Selected Cases

Unselected Cases
Total

N Percent

If weight is in effect, see classification table for the total
number of cases.

a. 

 
Dependent Variable Encoding

0
1

Original Value
not guilty
guilty

Internal Value

 
 
 
Block 0: Beginning Block 

Classification Tablea,b

55 0 100.0
45 0 .0

55.0

Observed
not guilty
guilty

VOTE1

Overall Percentage

Step 0
not guilty guilty

VOTE1 Percentage
Correct

Predicted

Constant is included in the model.a. 

The cut value is .500b. 
 

Variables in the Equation

-.201 .201 .997 1 .318 .818ConstantStep 0
B S.E. Wald df Sig. Exp(B)

 
Variables not in the Equation

75.041 1 .000
75.041 1 .000

CONSERVVariables
Overall Statistics

Step 0
Score df Sig.

 
 

A

C

B
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Exhibit 8 (continued) 
 
Block 1: Method = Enter 

Omnibus Tests of Model Coefficients

100.520 1 .000
100.520 1 .000
100.520 1 .000

Step
Block
Model

Step 1
Chi-square df Sig.

 
Model Summary

37.107 .634 .848
Step
1

-2 Log
likelihood

Cox & Snell
R Square

Nagelkerke
R Square

 
 

Classification Tablea

50 5 90.9
1 44 97.8

94.0

Observed
not guilty
guilty

VOTE1

Overall Percentage

Step 1
not guilty guilty

VOTE1 Percentage
Correct

Predicted

The cut value is .500a. 
 

Variables in the Equation

.108 .024 20.642 1 .000 1.114
-6.207 1.566 15.698 1 .000 .002

CONSERV
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: CONSERV.a. 
 

 
 
 

  
 
 
 
 
 
 
 

E

D

F

G
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We see that a senator with a conservatism rating of 0 (e.g. Boxer of California) has a predicted 
probability of voting guilty of 0.002.  At the other extreme, a senator with a conservatism rating 
of 100 (e.g. Helms of North Carolina) has a 0.99 predicted probability of voting guilty.   The 
‘dividing line’ appears to be between 57 and 58.  A conservatism rating of 57 leads to a 
predicted probability of 0.4873 – just under the 0.50 cutoff.  An increase of one to a 58 rating 
increases the predicted probability to 0.5142.  For a simple logistic regression (i.e., one with 
only one predictor variable), it is easy to compute the smallest value of the predictor needed for 
a predicted probability of 0.50 or greater. This 50% cutoff value is equal to 10 BB− .  In this 
example 10 BB−  = 6.207/.108 = 57.47.  Thus, any senator with a conservatism rating of 58 or 
higher would be expected to vote guilty, those with a rating of 57 or lower are expected to vote 
not guilty. 
 
In Exhibit 9 note that although conservatism increases in equal 5-unit increments, the increases 
in predicted probabilities are not equal. A 5-unit increase from 0 to 5 raises the probability of a 
guilty vote by only 0.0014 (=0.0034 - 0.0020), whereas an increase from 50 to 55 raises the 
probability by 0.1251 (=0.4336 - 0.3085). 
 
 
Exhibit 9 Table of Conservatism Ratings and Predicted Probabilities 
 
 

Degree of 
conservatism 

Predicted 
Probabilitya 

0 0.0020 
5 0.0034 

10 0.0059 
15 0.0101 
20 0.0172 
25 0.0291 
30 0.0489 
35 0.0811 
40 0.1316 
45 0.2064 
50 0.3085 
55 0.4336 
60 0.5678 
65 0.6927 
70 0.7946 
75 0.8691 
80 0.9193 
85 0.9513 
90 0.9711 
95 0.9829 

100 0.9900 
 

a Predicted Probability = 1/[1+exp(-ΣBX)] = 1/[1 + exp(6.207 - .108X)] 
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Exhibit 10  Plot of Logistic Regression Model 
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Interpreting Logistic Regression Coefficients 
 
In a linear regression model, we use the coefficients and standardized coefficients to describe 
the magnitude of the effect of that predictor.  For example, if the coefficient for a predictor X is 
4.5, we would say that for every unit increase in X, the predicted value of Y will increase by 4.5.  
Unfortunately, the interpretation is more complicated in a logistic regression. 
 
To interpret logistic regression results, you must understand probabilities, odds and odds ratios: 
 

• A Probability is the likelihood of an event and is bounded between 0 and 1. 
 

• An Odds is the ratio of two probabilities – for example, the probability of voting guilty 
divided by the probability of voting not guilty.  Odds cannot be negative (because 
probabilities cannot be negative), but odds have no upper bound.  In this example, the 
odds of a senator with a conservatism rating of 100 voting guilty is .99/.01 = 99. 
 

• An Odds Ratio is the ratio of two odds.   Like odds, the odds ratio cannot be negative, 
and has no upper bound. 

 
Exhibit 11 shows the probabilities, odds and odds ratios for different values of ideological 
conservatism. As we noted before, an increase of 1 in ideological conservatism does not have a 
constant effect on the dependent variable (predicted probability).  When conservatism increases 
from 40 to 41, the probability of a guilty vote increases by 0.1444 - 0.1316 = 0.0128.  When 
conservatism increases from 80 to 81, the probability of a guilty vote increases by 0.9270 - 
0.9193 = 0.0077.  The effect of an increase in conservatism depends on where you are on the 
curve in Exhibit 8. 
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Exhibit 11  Probabilities, Odds and Odds Ratios 
 
Conservatism 

Rating 
Prob(Guilty) Prob(Not Guilty) 

=1-Pr(Guilty) 
Odds 

=Pr(Guilty)/Pr(Got Guilty) 
Odds Ratio 

40 .1316 .8684 .1515   
41 .1444 .8556 .1668 .1668/.1515=1.114 
: : : :  

80 .9193 .0807 11.3916  
81 .9270 .0730 12.6986 12.6986/11.3916=1.114 

 
 
However the odds ratio is constant.  In this data, every increase of one in conservatism rating 
increases the odds of a guilty vote by a factor of 1.114, or 11.4%.  So while a one-unit change in 
a predictor variable does not have a constant effect on the predicted probability, it does have a 
constant effect on the odds. 
 
The odds ratio for a specific predictor is found using the following formula:  
 

Odds Ratio =exp(B) = eB 

 

For this example, B=0.108 and exp(B) = 1.114.  SPSS reports the odds ratio for each predictor 
in the last column of the ‘Variables in the Equation’ output. Now consider what the odds ratio will 
be for positive coefficients, negative coefficients and coefficients of zero: 
 

• Positive coefficients:  For any value of X > 0, exp(X ) >1.  So a positive coefficient will 
have an odds ratio greater than one, indicating that an increase in that variable will 
multiply the odds by a factor greater than one – increasing the odds that Y=1. 
 

• Negative coefficients:  For any value of X < 0, 0< exp(X) <1.  So a negative coefficient 
will have an odds ratio less than one, indicating that an increase in that variable will 
multiple the odds by a factor less than one – decreasing the odds that Y=1. 
 

• Coefficients equal to zero:  If the coefficient for a predictor variable is 0, then exp(0) = 1, 
indicating that a one unit change will the odds that Y=1 by a factor of 1.  Since 
multiplying something by one leaves it unchanged – an odds ratio of 1 indicates no 
effect (corresponding to the zero coefficient). 

 
Note that the magnitudes of positive and negative coefficients can be compared using the 
absolute values of the coefficients themselves or by taking the inverse of the odds ratio of the 
negative (or positive) coefficient.  For example, an odds ratio of 2.0 has the same ‘magnitude’ 
as an odds ratio of 0.5 (1/2 = .5, or 1/.5 = 2).  One is a doubling of the odds ratio, the other is a 
halving. 
 
 
Adding Another Predictor to the Model 
 
Exhibit 12 reports the key SPSS output from a second logistic regression model that includes 
the percent of state vote for Clinton in the1996 election in addition to degree of ideological 
conservatism.  The correlations reported earlier showed that senators from states showing 
strong support for Clinton in the 1996 election were less likely to vote guilty.  Will including it as 
a predictor improve the model? 
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Exhibit 12 SPSS Output from Second Logistic Regression Model 
 

Omnibus Tests of Model Coefficients

100.856 2 .000
100.856 2 .000
100.856 2 .000

Step
Block
Model

Step 1
Chi-square df Sig.

 

Model Summary

36.771 .635 .850
Step
1

-2 Log
likelihood

Cox & Snell
R Square

Nagelkerke
R Square

 

Classification Tablea

50 5 90.9
1 44 97.8

94.0

Observed
not guilty
guilty

VOTE1

Overall Percentage

Step 1
not guilty guilty

VOTE1 Percentage
Correct

Predicted

The cut value is .500a. 
 

Variables in the Equation

.105 .024 18.892 1 .000 1.111
-.040 .070 .324 1 .569 .961

-4.216 3.774 1.248 1 .264 .015

CONSERV
STATEVOT
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: CONSERV, STATEVOT.a. 
 

 
 
 
Conclusions drawn from the results in Exhibit 12 are summarized below: 
 

• There is virtually no difference in the chi-square values or overall significance of the 
model. 
 

• The –2 Log likelihood is nearly the same, as are the R square measures. 
 

• The classification results are identical to the model using only degree of ideological 
conservatism. 
 

• The ‘variables in the equation’ table shows that the state vote variable is not statistically 
significant.  The coefficient for conservatism is essentially unchanged. 
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In summary, this additional predictor does not improve the model and need not be included. 
 
Summary 
 
Logistic regression is used when the dependent variable is binary.  Like linear regression, the 
predictor variable can be metric or categorical.  In a logistic regression, the predicted values are 
bounded between 0 and 1 and are interpreted as the probability that the dependent variable 
equals one. Like linear regression, the coefficients and statistical tests will indicate whether the 
predictor variables are statistically significant – and whether they have a positive or negative 
effect on the probability that the dependent variable is one.   However, unlike linear regression, 
the effect of a one-unit change in X on Y is not linear – rather it depends on the value of X.  The 
odds ratios, in combination with the coefficients, are used to interpret the effects of individual 
predictor variables.   
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Appendix 
 

Additional Options with Logistic Regression in SPSS 
 

Categorical Predictors 
 
Categorical predictor variables can be included in both linear and logistic regression.  With 
linear regression it is necessary to code categorical predictors using dummy variables. For 
example, gender (male/female) would be recoded as a single 0-1 binary variable.  A categorical 
variable with more than two categories such as season (fall, winter, spring, summer) must be 
recoded using n-1 dummy variables where n is the number of categories.  Thus, season would 
need to be recoded into three 0-1 dummy variables. 
 
With logistic regression in SPSS, categorical variables can be included directly without recoding 
– however it is necessary to tell SPSS which predictors, if any, are categorical.  To do this click 
on the ‘categorical’ box in the main logistic regression dialog box.  This will activate a new dialog 
box listing all the covariates you have selected.  Simply highlight any categorical variables in the 
list and click on the right arrow to transfer them to the ‘categorical covariates’ box.  By default 
SPSS will use standard dummy variable coding (and you can choose whether you want the first 
or last category as the baseline or reference category).   
 
Obtaining Residuals 
 
As with linear regression, you can request various residuals to be saved as new variables in the 
data editor.  Two residuals that are unique to logistic regression are the predicted probabilities 
and the predicted group memberships.  The predicted probabilities are the probabilities of Y 
occurring given the values for the predictors for each observation.  The predicted group 
membership predicts which of the two categories of Y an observation is most likely to belong to 
based on the model 

 
 


